ISSN 1997-9657
       

Уортингтон М., ван Урс Б. Ролевая игра и культурные основы математических знаний

№05 2017 Уортингтон М., ван Урс Б. Ролевая игра и культурные основы математических знаний
Аннотация

Цель данного исследования – выявить наличие культурных математических понятий и коммуникаций в спонтанной игре маленьких детей. Исследование основывается на культурно-исторических взглядах Л.С. Выготского и социосемиотической теории, с учетом исследования «запаса знаний». В статье рассматривается, как детские неформальные знания семейных практик обогащают игру и культурные математические понятия детей. Лонгитюдные этнографические данные были собраны в центральном городском детском саду на юго-западе Англии. Данные включают в себя графические изображения и письменные записи наблюдений за 7 детьми в возрасте от трех до четырех лет, принимавших участие в играх понарошку. Согласно результатам исследования, многие эпизоды игры включали в себя математические аспекты. В течение года наблюдалось увеличение этого содержания. Было продемонстрировано, каким образом культурные знания детей, полученные дома, подкрепляли игру и влияли на их математические представления. Также подтверждено, что дети использовали графические изображения, чтобы передавать математические понятия в ходе игры. Полученные данные также показывают, что, когда дети погружены в насыщенную математическими и графическими материалами среду, объединение культуры дома и детства становится естественной характеристикой игры. Полученные данные дополняют наше понимание культурных и математических знаний маленьких детей.

 

Фрагмент статьи

Предпосылки исследования

C момента рождения дети попадают в организованное культурное пространство. Манн и Клейнберг (2003, 51/53) подчеркивают, что детям необходимо изучать правила культуры, касающиеся того, «как используется система и какова ее роль в нашей культуре», «возможно, эти правила культуры являются самыми важными вещами, которые дети изучают», без их понимания дети «рискуют оказаться в море бессмысленной деятельности».

На каком этапе онтогенеза формируется культурная основа математических знаний? 
В исследованиях особое внимание уделено знаниям, которые дети раннего возраста получают в семье (см. Aubrey, 1997; Carruthers, 1997), при этом в образовательных учреждениях сохраняется «некая мистика относительно математики как культурного явления» (Munn and Kleinberg, 2003, 109).

Ван Урс подчеркивает, что дети с самого начала жизни являются членами общества, которое широко использует математические знания (2001, 59–60). Дети естественным образом участвуют в культурных практиках, которые включают математические разговоры и представления, и родители знакомят младенцев и дошкольников с числами и вычислениями через песни, игры, игрушки и нумерацию дней рождений. Следовательно, мы можем встретить доказательства существования этих математических знаний в игре. Однако Гиффорд, рефлексируя по поводу своих неформальных наблюдений, заявляет: «в детских ролевых играх затрагиваются более глобальные жизненные проблемы, скорее, такие, как любовь и власть, нежели такие приземленные вещи, как стоимость картошки», добавляя в завершении, «принцип невмешательства в обучение детей математике… не работает», поскольку дети не способны воспользоваться преимуществами предоставленных возможностей (2005, 2).

Другие исследователи обнаружили схожий недостаток использования математических навыков в игре. В исследовании с участием 10 шотландских детских садов, проведенном Манн и Шаффер, было обнаружено, что дети без участия взрослых крайне редко использовали цифры, и, согласно их наблюдениям, в ролевых играх математика вообще не использовалась (1993). Эверс-Роджерс и Коуэн показали, что дети, играя по сценарию «фаст фуд» (ресторанов быстрого питания), «не использовали цифры», они также утверждают, что, «возможно, для обыкновенных английских дошкольников деньги не имеют большого значения» (1996). Бреннон и ван де Валле, исходя из своих исследований, сделали вывод, что, «возможно, для маленьких детей число не является автоматическим измерением окружающего пространства, имеющим большое значение» (2001, 75). Систематические исследования деятельности детей в 10 англий­ских детских учреждениях подтвердили вышеуказанные выводы (Moyles and Worthington, 2011). Тем не менее, представляется маловероятным, что маленькие дети могут упускать один из аспектов их взаимодействия, а именно цифры из игр. Исключением из этих результатов является исследование Кука (2006), которое, как и исследование Каррутерс и Уортингтон, начиналось с понимания зарождающейся грамотности.

В начале своего исследования Кук добавила некоторые игровые элементы с цифрами (например, открытки к дню рождения с цифрами) в пространство детского сада, которое было отведено для ролевых игр. Наиболее значимым результатом такого вмешательства стало увеличение использования цифровых символов детьми в играх. В свою очередь, это стимулировало инициативу детей использовать в речи математические понятия и «подтолкнуло детей к игре о том, что они знали», используя существующие знания (2006, 65).

* Maulfry Worthington & Bert van Oers (2016) Pretend play and the cultural foundations of mathematics,, European Early Childhood Education Research Journal. Vol. 24, No. 1, 51–66, http://dx.doi.org/10.1080/1350293X.2015.1120520. Публикуется с любезного разрешения журнала European Early Childhood Education Research Journal.

Полный текст статьи читайте в журнале "СДО"

Список литературы

1. Abreu, G. de, Bishop, A.J. and Pompeu, G. 1997. “What children and teachers count as mathematics.” In Learning and Teaching Mathematics: an International Perspective, edited by T. Nunes and P. Bryant, 233–264. Hove: Psychology Press.
2. Aubrey, C. 1997. Mathematics Teaching in the Early Years. London: Falmer Press.
3. BERA. 2011. Ethical Guidelines for Research. London: BERA.
4. Bishop, A. J. 1991. Mathematical Enculturation. Dordrecht, the Netherlands: Kluwer Academic Publishers.
5. Brandt, B., and K. Tiedmann. 2009. “Learning Mathematics within Family Discourses.” Proceedings of CERME 6, January 28th – February 1st, Lyon, France.
6. Brannon, E. M., and G. van de Walle. 2001. “Ordinal Numerical Knowledge in Young Children.” Cognitive Psychology 43: 53–81.
7. Brooker, L. 2011. “Taking Play Seriously.” In Rethinking Play and Pedagogy in Early Childhood Education, edited by S. Rogers, 152–164. Maidenhead: Open University Press.
8. Brown, F. 2012. “The Play Behaviours of Roma Children in Transylvania.” International Journal of Play 1 (1): 64–74.
9. Carr, M. 2001. Assessment in Early Childhood Settings: Learning Stories. London: Sage Publications.
10. Carruthers, E. 1997. “Number: A Developmental Theory: A Case Study of a Child from 20 to 44 Months.” Unpublished Masters (M.Ed.) Dissertation, University of Plymouth.
11. Carruthers, E., and M. Worthington. 2005. “Making Sense of Mathematical Graphics: the Development of Understanding Mathematical Symbolism.” European Early Childhood Education Research Association Journal 13 (1): 57–79.
12. Carruthers, E., and M. Worthington. 2006. Children’s Mathematics: Making Marks, Making Meaning. 2nd ed. London: Sage Publications.
13. Cook, D. 2006. “Mathematical Sense Making and Role Play in the Nursery.” Early Child Development and Care 121 (1): 55–66.
14. Dunn, J. 2005. “Naturalistic Observations of Children and their Families.” In Researching Children’s Experience, edited by S. Green. and D. Hogan, 87–101. London: Sage Publications.
15. Emond, R. 2005. “Ethnographic Research Methods with Children and Young People.” In Researching Children’s Experience, edited by S. Green. and D. Hogan, 123–139. London: Sage Publications.
16. Ewers-Rogers, J. and R. Cowan. 1996. “Children as Apprentices to Number.” Early Childhood Development and Care 125: 15–25.
17. Fleer, M. 2010. “Conceptual and Contextual Intersubjectivity for Affording Concept Formation in Children’s Play.” In Engaging Play, edited by L. Brooker and S. Edwards, 67–79. Maidenhead: Open University Press.
18. Geertz, C. 1973. The Interpretation of Cultures. New York: Basic Books.
19. Gifford, S. 2005. Teaching Mathematics 3–5. Maidenhead: Open University Press.
20. Gцncь, A. and S. Gaskins. 2007. Play and Development: Evolutionary, Sociocultural and Functional Perspectives. Abingdon: Taylor and Francis.
21. Hammersley, M. and P. Atkinson. 1995. Ethnography. London: Routledge.
22. Hedges, H., and J. Cullen. 2005. “Meaningful Teaching and Learning: Children’s and Teachers’ Content Knowledge.” ACE Paper 1: 11–24.
23. Hughes, M. 1986. Children and Number: Difficulties in Learning Mathematics. Oxford: Basil Blackwell.
24. Hughes, B. 2001. Evolutionary Playwork and Reflective Analytic Practice. London: Routledge.
25. Krummheuer, G. 2013. “The Relationship Between Diagrammatic Argumentation and Narrative Argumentation in the Context of the Development of Mathematical Thinking in the Early Years.” Educational Studies in Mathematics 84: 249–265. DOI 10.1007/s10649-013-9471-9
26. Leont’ev, A. N. 1981. Problems of the Development of Mind. Moscow: Progress Publishers.
27. Moll, L., C. Amanti, D. Neff, and N. Gonzales. 1992. “Funds of Knowledge for Teaching.” Theory into Practice 31 (2): 132–141.
28. Moyles, J. and M. Worthington. 2011. “The Early Years Foundation Stage through the Daily Experiences of Children.” TACTYC Occasional Paper no. 1.
29. Munn, P., and S. Kleinberg. 2003. “Describing Good Practice in the Early Years – A Response to the ‘Third Way’.” Education 3 (13): 50–53.
30. Munn, P. and R. Schaffer. 1993. “Literacy and Numeracy Events in Social Interactive Contexts.” International Journal of Early Years Education 1 (3): 61–80.
31. Parker-Rees, R. 1999. “Protecting playfulness.” In Early Education Transformed, edited by L. Abbott. and H. Moylett, 61–72. London: Falmer.
32. Poland, M. 2007. “The Treasures of Schematising.” Doctoral dissertation, Amsterdam: VU University.
33. Poland, M., B. van Oers, and J. Terwel. 2009. “Schematising Activities in Early Childhood Education.” Educational Research and Evaluation 15 (3): 305–321.
34. Riojas-Cortez, M. 2000. “Mexican American pre-Schoolers Create Stories: Sociodramatic Play in A Dual Language Classroom.” Bilingual Research Journal 24 (3): 295–307.
35. Rogers, S. 2010. “Powerful Pedagogies and Playful Resistance.” In Engaging Play, edited by L. Brooker and S. Edwards, 152–165. Maidenhead: Open University Press.
36. Rogers, S. and J. Evans. 2008. Inside Role-Play in Early Childhood Education. London: Routledge.
37. Rogoff, B. 2008. “Observing Sociocultural Activity on Three Planes.” In Pedagogy and Practice: Culture and Identities, edited by P. Murphy, K. Hall, and J. Soler, 58–74. London: Sage Publications.
38. Saxe, G. 1991. Culture and Cognitive Development: Studies in Mathematical Understanding. Hillsdale: Lawrence Erlbaum.
39. Van Oers, B. 2001. “Educational Forms of Initiation in Mathematical Culture.” Educational Studies in Mathematics 46: 59–85.
40. Van Oers, B. 2012. “How to Promote Young Children’s Mathematical Thinking?” Mediterranean Journal for Research in Mathematics Education 11 (12): 1–15.
41. Vygotsky, L. S. 1978. Mind in Society: The Development of Higher Psychological Processes. Cambridge, Massachusetts: Harvard University Press.
42. Vygotsky, L. S. 1987. The Collected Works of L.S. Vygotsky. Volume 1: Problems of General Psychology. New York: Plenum Press.
43. Yelland, N., and A. Kilderry. 2010. “Becoming Numerate with Information and Communications Technologies in the Twenty-First Century.” International Journal of Early Years Education 18 (2): 91–106.

Правила использования
Правообладателем настоящей статьи разрешается её использование только для личного некоммерческого использования в образовательных целях. Издатель не несёт ответственности за содержание материалов статьи.

Ключевые слова

ролевая игра, математика, запас знаний, раннее детство, математическая графика детей